626 research outputs found

    The Euler characteristic and the first Chern number in the covariant phase space formulation of string theory

    Full text link
    Using a covariant description of the geometry of deformations for extendons, it is shown that the topological corrections for the string action associated with the Euler characteristic and the first Chern number of the normal bundle of the worldsheet, although do not give dynamics to the string, modify the symplectic properties of the covariant phase space of the theory. Future extensions of the present results are outlined.Comment: 12 page

    Selfdual 2-form formulation of gravity and classification of energy-momentum tensors

    Full text link
    It is shown how the different irreducibility classes of the energy-momentum tensor allow for a Lagrangian formulation of the gravity-matter system using a selfdual 2-form as a basic variable. It is pointed out what kind of difficulties arise when attempting to construct a pure spin-connection formulation of the gravity-matter system. Ambiguities in the formulation especially concerning the need for constraints are clarified.Comment: title changed, extended versio

    Deformations of extended objects with edges

    Full text link
    We present a manifestly gauge covariant description of fluctuations of a relativistic extended object described by the Dirac-Nambu-Goto action with Dirac-Nambu-Goto loaded edges about a given classical solution. Whereas physical fluctuations of the bulk lie normal to its worldsheet, those on the edge possess an additional component directed into the bulk. These fluctuations couple in a non-trivial way involving the underlying geometrical structures associated with the worldsheet of the object and of its edge. We illustrate the formalism using as an example a string with massive point particles attached to its ends.Comment: 17 pages, revtex, to appear in Phys. Rev. D5

    Chiral Superconducting Membranes

    Full text link
    We develop the dynamics of the chiral superconducting membranes (with null current) in an alternative geometric approach either making a Lagrangian description and a Hamiltonian point of view. Besides of this, we show the equivalence of the resulting descriptions to the one known Dirac-Nambu-Goto (DNG) case. Integrability for chiral string model is obtained using a proposed light-cone gauge. In a similar way, domain walls are integrated by means of a simple ansatz. We compare the results with recently works appeared in the literature.Comment: Latex file, 17 pages, no figures. Improved version, typos corrected, Comments and references adde

    Yang-Mills theory a la string

    Get PDF
    A surface of codimension higher than one embedded in an ambient space possesses a connection associated with the rotational freedom of its normal vector fields. We examine the Yang-Mills functional associated with this connection. The theory it defines differs from Yang-Mills theory in that it is a theory of surfaces. We focus, in particular, on the Euler-Lagrange equations describing this surface, introducing a framework which throws light on their relationship to the Yang-Mills equations.Comment: 7 page

    Open strings with topologically inspired boundary conditions

    Full text link
    We consider an open string described by an action of the Dirac-Nambu-Goto type with topological corrections which affect the boundary conditions but not the equations of motion. The most general addition of this kind is a sum of the Gauss-Bonnet action and the first Chern number (when the background spacetime dimension is four) of the normal bundle to the string worldsheet. We examine the modification introduced by such terms in the boundary conditions at the ends of the string.Comment: 12 pages, late

    Towards a path integral for the pure-spin connection formulation of gravity

    Full text link
    A proposal for the path-integral of pure-spin-connection formulation of gravity is described, based on the two-form formulation of Capovilla et. al. It is shown that the resulting effective-action for the spin-connection, upon functional integration of the two-form field Σ\Sigma and the auxiliary matrix field ψ\psi is {\it non-polynomial}, even for the case of vanishing cosmological constant and absence of any matter couplings. Further, a diagramatic evaluation is proposed for the contribution of the matrix-field to the pure spin connection action.Comment: 8 pages in plain-TeX.-----IUCAA_TH/9

    ADM Worldvolume Geometry

    Full text link
    We describe the dynamics of a relativistic extended object in terms of the geometry of a configuration of constant time. This involves an adaptation of the ADM formulation of canonical general relativity. We apply the formalism to the hamiltonian formulation of a Dirac-Nambu-Goto relativistic extended object in an arbitrary background spacetime.Comment: 4 pages, Latex. Uses espcrc2.sty To appear in the proceedings of the Third Conference on Constrained Dynamics and Quantum Gravity, September, 1999. To appear in Nuclear Physics B (Proceedings Supplement

    On the solution of the initial value constraints for general relativity coupled to matter in terms of Ashtekar's variables

    Full text link
    The method of solution of the initial value constraints for pure canonical gravity in terms of Ashtekar's new canonical variables due to CDJ is further developed in the present paper. There are 2 new main results : 1) We extend the method of CDJ to arbitrary matter-coupling again for non-degenerate metrics : the new feature is that the 'CDJ-matrix' adopts a nontrivial antisymmetric part when solving the vector constraint and that the Klein-Gordon-field is used, instead of the symmetric part of the CDJ-matrix, in order to satisfy the scalar constraint. 2) The 2nd result is that one can solve the general initial value constraints for arbitrary matter coupling by a method which is completely independent of that of CDJ. It is shown how the Yang-Mills and gravitational Gauss constraints can be solved explicitely for the corresponding electric fields. The rest of the constraints can then be satisfied by using either scalar or spinor field momenta. This new trick might be of interest also for Yang-Mills theories on curved backgrounds.Comment: Latex, 15 pages, PITHA93-1, January 9
    corecore